这篇文章主要摘至信通院发布的《数据资产管理实践白皮书5.0》(以下简称:白皮书),这版白皮书写的非常好,从数据资产对企业的价值,到数据资产管理的活动职能,数据资产管理的保障措施,数据资产管理的实践步骤,以及数据资产管理的技术趋势,都有较为详细的说明,为企业进行数据治理、数据资产管理提供了参考。跟着本文,让我们再来复习一下白皮书的精髓!
党的十九届四中全会首次将“数据”增列为一种生产要素,要求建立健全由市场评价贡献、 按贡献决定报酬的机制,标志着以数据为关键要素的数字经济进入新时代。数据要素所引发的生 产要素变革,正在重塑着我们的需求、生产、供应和消费,改变着社会的组织运行方式。
数据标准是指保障数据的内外部使用和交换的一致性和准确性的规范性约束。数据标准管理 的目标是通过制定和发布由数据利益相关方确认的数据标准,结合制度约束、过程管控、技术工 具等手段,推动数据的标准化,进一步提升数据质量。
主数据(Master Data)是指用来描述企业核心业务实体的数据,是跨越各个业务部门和 系统的、高价值的基础数据。主数据管理(MDM ,Master Data Management)是一系列 规则、应用和技术,用以协调和管理与企业的核心业务实体相关的系统记录数据。
元数据(Metadata)是指描述数据的数据。元数据管理(Meta Data Management) 是数据资产管理的重要基础,是为获得高质量的、整合的元数据而进行的规划、实施与控制行为。
数据开发是指将原始数据加工为数据资产的各类处理过程。数据开发管理是指通过建立开 发管理规范与管理机制,面向数据、程序、任务等处理对象,对开发过程和质量进行监控与管控, 使数据资产管理的开发逻辑清晰化、开发过程标准化,增强开发任务的复用性,提升开发的效率。
对于组织而言,数据资产流通是指通过数据共享、数据开放或数据交易等流通模式,推动数据资产在组织内外部的价值实现。
数据价值评估是指通过构建价值评估体系, 计量数据的经济效益、业务效益、投入成本等活动。数据价值评估是数据资产管理的关键环节, 是数据资产化的价值基线。
数据资产运营是指通过对数据服务、数据流通情况进行持续跟踪和分析,以数据价值管理为参考,从数据使用者的视角出发,全面评价数据应用效果,建立科学的正向反馈和闭环管理机制, 促进数据资产的迭代和完善,不断适应和满足数据资产的应用和创新需求。
战略是组织长期发展规划及资源配置的一系列行动,对于组织持续稳定发展具有重要的指导意义。战略规划是战略管理的首要环节和基础性工作,是数据资产管理的指导蓝图。战略执行是战略管理的中间环节,是战略规划落地的有效保障。战略评估是优化组织数据战略管理、提升数据战略指导作用的必要手段。
数据资产管理实践的通用步骤:“统筹规划→管理实施→稽核检查→资产运 营”,但各步骤之间并无严格的先后顺序,组织可结合自身情况在各阶段制定合理 的实施方案。
项目是执行组织级数据资产管理的最小单元,良好的数据资产项目管理是基础,类比 IT+ 项目 管理框架,主要从目标一致性、角色合理性、范围明确性(包括业务范围、数据范围、技术范围等)、 风险可控性、成本可计量、质量可优化等方面考虑,如下图:
从信息时代到数字时代,数据由记录业务逐渐转变为智+能决策,成为了组织持续发展的核心引擎。未来,数据资产管理将朝着统一化、专业化、敏捷化的方向发展,提高数据资产管理效率,主动赋能业务, 推动数据资产安全有序流通,持续运营数据资产,充分发挥数据资产的经济价值和社会价值。
伴随着互联网、物联网、云计算的发展,数据在来源、格式等方面的复杂性持续增加。
传统的数据资产管理建设往往由多个分散的管理活动和解决方案组成,造成数据资产管理各 个环节之间的脱节(包括开发与管理、管理与运营)的脱节,使得数据从生产端到消费端的开发 效率降低。
Data Fabric 是数据仓库、数据湖的理念和技术升级,其目标是减少数据复制规模,节约数据集成成本,提升数据访问和获取效率。
随着数据复杂性持续增加,依靠“手工人力”的数据资产管理手段将逐步被“自动智+能”的“专 业工具”取代,覆盖数据资源化、数据资产化的多个活动职能,在不影响数据资产管理效果的同时, 极大地降低了数据资产管理成本。
运营数据是持续创造数据价值的有效方式,多元化的数据生态通过引入多维度数据、多类参 与方、多种产品形态,进一步拓展数据应用场景和数据合作方式,为数据运营提供了良好的环境。